Based on a compact and responsive 296cc twin-cylinder engine, the 2020 Kawasaki Versys®-X 300 motorcycle is a nimble, lightweight motorcycle that’s ready to take on any size adventure. Whether you’re commuting or touring, the Versys-X 300 is a willing companion. With a lightweight chassis and long-travel suspension, the possibilities are endless.
Take it for a ride todaySudden over-application of the brakes, or braking on low-grip surfaces (surfaces with a low coefficient of friction) such as wet asphalt or manhole covers, may cause a motorcycle's wheel(s) to lock up and slip.
Developed and tested through Kawasaki Factory racing, the Assist & Slipper Clutch utilizes two types of cams. An assist cam and a slipper cam enable the Assist & Slipper Clutch to function in two different ways, with the clutch hub working together or apart from the operating plate. Under normal operat
Modern sportbikes often use large-bore throttle bodies to generate high levels of power. However, with large-diameter throttles, when a rider suddenly opens the throttle, the unrestricted torque response is anythin
Using high-precision electronics for engine management, Kawasaki models can achieve a high level of fuel efficiency. However, fuel consumption is greatly affected by throttle use, gear selection, and other elemen
ERGO-FIT is an interface system that allows a wide range of riders to feel at one with their machine.
4-stroke, 2-cylinder, DOHC, liquid-cooled
296cc
62.0 x 49.0mm
10.6:1
DFI® with 32mm throttle bodies (2)
TCBI with digital advance
6-speed, return shift
Telescopic fork/5.1 in
Uni-Trak® swingarm/5.8 in
100/90-19M/C 57S
13/80-17M/C 65S
24°/4.3 in
7.1 in
57.1 in
85.4 in
33.9 in
54.7 in
32.1 in
385.9 lb**
4.5 gal
Sealed chain
Tubular, diamond
Pearl Blizzard White/Metallic Matte Carbon Gray
12, 24, 36 or 48 months
Single Disc, ABS
Single Disc, ABS
12 Month Limited Warranty
**Curb weight includes all necessary materials and fluids to operate correctly, full tank of fuel (more than 90 percent capacity) and tool kit (if supplied).
Specifications subject to change
KAWASAKI CARES: Always wear a helmet, eye protection, and proper apparel. Never ride under the influence of drugs or alcohol. Read Owner’s Manual and all on-product warnings. Professional rider shown on a closed course. ©2021 Kawasaki Motors Corp., U.S.A.
Sudden over-application of the brakes, or braking on low-grip surfaces (surfaces with a low coefficient of friction) such as wet asphalt or manhole covers, may cause a motorcycle's wheel(s) to lock up and slip. ABS was developed to prevent such incidents. Kawasaki ABS systems are controlled by highly precise and extremely reliable programming formulated thorough testing of numerous riding situations. By ensuring stable braking performance, they offer rider reassurance for even greater riding enjoyment.
To meet the special requirements of certain riders, specialized ABS systems are also available. For example, KIBS (Kawasaki Intelligent anti-lock Brake System) is a precision-tuned brake system designed specifically for supersport models, enabling sport riding to be enjoyed by a wider range of riders. By linking the front and rear brakes, K-ACT (Kawasaki Advanced Coactive-braking Technology) ABS provides the confidence to enjoy touring on heavyweight models. Kawasaki is continually working on the development of other advanced ABS systems.
Developed and tested through Kawasaki Factory racing, the Assist & Slipper Clutch utilizes two types of cams. An assist cam and a slipper cam enable the Assist & Slipper Clutch to function in two different ways, with the clutch hub working together or apart from the operating plate.
Under normal operation, the assist cam functions as a self-servo mechanism, pulling the clutch hub and operating plate together to compress the clutch plates. This allows the total clutch-spring load to be reduced, resulting in a lighter clutch feel at the lever.
When excessive engine braking occurs – as a result of quick downshifts (or an accidental downshift) – the slipper cam comes into play, forcing the clutch hub and operating plate apart. This relieves pressure on the clutch plates to reduce back-torque and help prevent the rear tire from hopping and skidding.
Modern sportbikes often use large-bore throttle bodies to generate high levels of power. However, with large-diameter throttles, when a rider suddenly twists the throttle, the unrestricted torque response is anything but gentle, and often more than the rider can handle. Dual throttle valve technology was designed to tame engine response while enabling high performance.
On fuel-injected models, throttle bodies generally have only one throttle valve per cylinder. On models with dual throttle valves, there are two per cylinder: in addition to the main valves, which are physically linked to the throttle grip and controlled by the rider, a second set of valves, controlled by the ECU, precisely regulates intake airflow to ensure a natural, linear response. With the air passing through the throttle bodies flowing smoothly, combustion efficiency is improved and power is increased.
Like other Kawasaki engine management technology, Dual Throttle Valves were designed with the philosophy of "following the rider's intention, while providing natural-feeling support." They are featured on many Kawasaki models.
Using high-precision electronics for engine management, Kawasaki models can achieve a high level of fuel efficiency. However, fuel consumption is greatly affected by throttle use, gear selection, and other elements under the rider's control. The Economical Riding Indicator is a function that signals when current riding conditions are consuming an optimally low amount of fuel. The system continuously monitors fuel consumption, regardless of vehicle speed, engine speed, throttle position and other riding conditions. When fuel consumption is low for a given speed (i.e., fuel efficiency is high), an "ECO" emblem appears on the LCD screen of the instrument panel. By riding so that the "ECO" mark remains on, fuel consumption can be minimized.
While effective vehicle speed and engine speed may vary by model, paying attention to conditions that cause the "ECO" mark to appear can help riders improve their fuel efficiency – a handy way to increase cruising range. Further, keeping fuel consumption low also helps minimize negative impact on the environment.
Proper fit is key for rider comfort and control. However, the ideal fit varies from rider to rider, depending on their physical dimensions and riding style.
ERGO-FIT is an interface system designed to allow riders to find their ideal riding position. Various points of the chassis interface (the handlebar, footpegs and seat, etc) can be adjusted through a combination of interchangeable parts and parts with adjustable positions. This enables a wide range of riders to find a riding position that offers both comfort and control. Feeling at one with their machine, they will be able to experience how Kawasaki machines are fun and rewarding to ride.
*Adjustable parts and their range of adjustability vary by model.